TECHNISCHE UNIVERSITÄT MÜNCHEN

Andrea Winnerl Aufgaben Donnerstag FERIENKURS LINEARE ALGEBRA FÜR PHYSIKER WS 2008/09

Aufgabe 1 Determinante und Invertierbarkeit

Berechnen Sie die Determinanten folgender Matrizen und geben Sie an, ob die Matrizen invertierbar sind.

$$A = \left(\begin{array}{cc} 1 & i \\ i & 1 \end{array}\right)$$

$$B = \left(\begin{array}{ccc} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{array}\right)$$

$$C = \left(\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 2 \end{array}\right)$$

Aufgabe 2 Determinante und charakteristisches Polynom

Für welche $\lambda \in \mathbb{R}$ ist die folgende Matrix invertierbar und wie hängt diese Matrix mit dem charakteristischen Polynom zusammen?

$$A = \left(\begin{array}{ccc} 2 - \lambda & 2 & -1\\ 2 & 1 - \lambda & 1\\ 2 & -1 & 5 - \lambda \end{array}\right)$$

Aufgabe 3 Eigenwerte und Eigenvektoren

Berechnen Sie das charakteristische Polynom, die Eigenwerte und die Eigenvektoren der folgenden Matrizen.

$$A = \left(\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 3 & 0 \\ -1 & 2 & 1 \end{array}\right)$$

$$B = \left(\begin{array}{rrrr} 5 & -5 & 7 \\ -4 & 3 & -5 \\ -7 & 4 & -8 \end{array}\right)$$

Aufgabe 4 Eigenwerte Teil 2

Berechnen Sie die Eigenwerte der Matrix A. Folgern Sie aus den Eigenwerten von A die Eigenwerte von A^2 , A^3 und A^4 sowie die Matrix A^4 .

$$A = \frac{1}{2} \begin{pmatrix} 0 & -1 - i & 0 & 1 - i \\ -1 - i & 0 & 1 - i & 0 \\ 0 & 1 - i & 0 & -1 - i \\ 1 - i & 0 & -1 - i & 0 \end{pmatrix}$$

Aufgabe 5 ein Beweis

Gegeben sein eine $n \times n$ -Matrix $A \in \mathbb{C}^{n \times n}$ sowie eine invertierbare $n \times n$ -Matrix $B \in \mathbb{C}^{n \times n}$. Drücken Sie (soweit möglich) die Eigenwerte und Eigenvektoren der folgenden Matrizen durch die Eigenwerte und Eigenvektoren von A bzw. B aus.

- a) $r \cdot A$ mit $r \neq 0$
- b) A^k mit $k \in \mathbb{N}$
- c) A^{-1} falls A invertierbar
- d) $B^{-1} \cdot A \cdot B$
- e) A^T

Aufgabe 6 eine alte Klausuraufgabe

Gegeben sei die Matrix
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 6 & -9 & 6 \\ 0 & 6 & -2 \end{pmatrix}$$

- a) Geben Sie für $\operatorname{Kern}(f)$ und $\operatorname{Bild}(f)$ jeweils die Dimension und eine Basis an.
- b) Zeigen Sie, dass $\begin{pmatrix} 2 & -6 & 3 \end{pmatrix}^T$ ein Eigenvektor von A ist.
- c) Bestimmen Sie das charakteristische Polynom von A und geben Sie alle Eigenwerte und Eigenvektoren von A an.

Aufgabe 7 noch eine alte Klausuraufgabe

Gegeben sei die Matrix
$$A=\begin{pmatrix}3&2&1\\0&3&4\\0&4&-3\end{pmatrix}\in\mathbb{R}^{3\times 3}$$
 und der Vektor $v_1=\begin{pmatrix}5\\4\\2\end{pmatrix}$

- a) Begründen Sie, warum A invertierbar ist. Die Bestimmung von A^{-1} ist dabei nicht verlangt!
- b) Zeigen Sie, dass v_1 ein Eigenvektor von A ist und bestimmen Sie den zugehörigen Eigenwert λ .
- c) Bestimmen Sie den Eigenvektor v_2 von A zum Eigenwert $\lambda_2=-5.$
- d) Bestimmen Sie den fehlenden Eigenwert $\lambda_3 \notin \lambda_1, \lambda_2$ von A.
- e) Geben Sie eine Basis des \mathbb{R}^3 aus Eigenvektoren von A
 an.