Karsten Donnay (kdonnay@ph.tum.de)

Blatt 3

Ferienkurs Experimentalphysik 4 - SS 2008

1 Verständnisfragen

- (a) Was ist eine gute Quantenzahl? Was sind die guten Quantenzahlen der Wasserstoffniveaus wenn man sowohl die relativistische Energiekorrektur als auch die Feinstrukturaufspaltung berücksichtigt?
- (b) Welcher Zusammenhang besteht zwischen Feinstruktur und Zeeman-Effekt?
- (c) Erklären Sie kurz welches quantenmechanische Bild das klassische Bild eine Bohrschen Atoms ersetzt.

2 Spin-Bahn-Kopplung

Die Feinstrukturaufspaltung der Wasserstoffniveauss entsteht durch die sogenannte Spin-Bahn-Kopplung: das magnetische Moment des Elektrons koppelt an das durch die eigene Bahnbewegung erzeugte Magnetfeld. Wir betrachten ein halbklassisches Modell der Spin-Bahn-Kopplung und wollen daraus einen Ausdruck für die Energieverschiebung der Wasserstoffniveaus herleiten.

- (a) Betrachten wir zunächst das Wasserstoffatom aus dem Ruhesystem des Elektrons, dann bewegt sich der Kern um das Elektron. Welches Magnetfeld erzeugt er nach klassischer Rechnung am Ort des Elektrons?
- (b) Wie sieht das Magnetfeld aus wenn man es klassisch ins Ruhesystem des Kerns transformiert?
- (c) Bei vollständig relativistischer Behandlung des Feldes ergibt sich im Ruhesystem des Kerns ein zusätzlicher Faktor 1/2, der *Thomas-Faktor* (eine schöne Herleitung des Thomas Faktors findet sich z.B. in *Jackson*, klass. Elektrodynamik auf S. 633-639). Leiten Sie nun unter Verwendung des transformierten Feldes einen Ausdruck für die Energieverschiebung ΔE_{FS} her.
- (d) Geben Sie die Verschiebung des 'Schwerpunkts' der Energieniveaus mit der Aufspaltung durch die Spin-Bahn-Kopplung an . Gewichten Sie dabei jedes Niveau (n, j) mit der Anzahl seiner magnetischen Unterzustände. Warum hätte man das Ergebnis so erwarten können?

3 Hyperfeinstruktur

Die Hyperfeinstruktur ist eine weitere Aufspaltung magnetischer Zustände, die analog zur Spin-Bahn-Kopplung durch die Kopplung des magnetischen Moments μ_j eines Hüllenelektrons mit dem magnetischen Moment des Kerns μ_I entsteht. Dabei bezeichnet j den Gesamtspin des Hüllenelektrons, I den Gesamtspin des Kerns, zusammen ergeben die beiden den Gesamtdrehimpuls F = j + I.

- (a) Schätzen Sie das Verhältnis $\frac{\Delta E_{HFS}}{\Delta E_{FS}}$ der Hyperfeinaufspaltung zur Aufspaltung durch die Spin-Bahn-Kopplung ab.
- (b) Der Grundzustand des Deuteriums ist in zwei Hyperfein-Niveaus mit F = 1/2 und F = 3/2 aufgespalten. Welchen Wert muss entsprechend die dem Deuterium zugeordnete Spinquantenzahl I haben? Was kann man daraus über den Spin des Protons und Neutrons im Kern schließen?
- (c) In welche Hyperfeinzustände spaltet dann das $p_{3/2}$ -Niveau des Deuteriums auf?

4 Wasserstoffatom

Wir betrachten am Beispiel des $2p \to 1s$ Übergang des Wasserstoffatoms atomare Übergänge in Ein-Elektronensystemen.

- (a) Verifizieren Sie, dass der $2p \to 1s$ Übergang ein erlaubter elektrischer Dipolübergang ist, also die Bedingung $\Delta l = \pm$ und $\Delta m = 0, \pm 1$ erfüllt.
- (b) Zeigen Sie, dass die relative Linienbreite $\frac{\Delta\omega}{\omega}$ des $2p\to 1s$ Übergangs von der Größenordnung α^3 ist. Schätzen Sie dabei großzügig ab. (Hinweis: Die Linienbreite $\Delta\omega$ entspricht der Zerfallswahrscheinlichkeit.)

Die folgenden Formeln könnten sich als nützlich erweisen:

$$R_{10}(r) = 2 a_B^{-3/2} e^{-r/a_B}, R_{21}(r) = \frac{r}{\sqrt{24}} a_B^{-5/2} e^{-r/(2a_B)}, \int_0^\infty x^n e^{-ax} = \frac{n!}{a^{n+1}} (n = 0, 1, 2, ..., a > 0)$$